CEN CWA 16926-13

WORKSHOP August 2015

AGREEMENT

ICS 35.240.40; 35.240.15; 35.200

English version

Extensions for Financial Services (XFS) interface specification
Release 3.30 - Part 13: Alarm Device Class Interface -
Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the
technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,

Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United
Kingdom.

. — |

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITE EUROPEEN DE NORMALISATION
EUROPAISCHES KOMITEE FUR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2015 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 16926-13:2015 E

CWA 16926-13:2015 (E)

Table of Contents

EUuropean fOreWOrd...........coiiiriiinnss s s s s ssasssns s s ssmsssnssansmsssnssasssnsans 3
1. L0 Yo LT3 { (oY o T 6
1.1 Background to Release 3.30coiiciieiiiiiiiriciresrrr s s s s s s s rn s s e s e rra e nrrn e e rrnnrnnns 6
1.2 XFS Service-Specific Programming.........cccovuuiiiiiiiiiiiiiiri i e e 6
2. 7 £ = Y 1 8
3. [G (=YL= 1 Lo = 9
4, INTO COMMANAS......eensnsnsnsnsnsnsssssssnsssssssssnsnsnsssnsnsnsnsnsnsnsnsnsnsnsnsnsnsnnnnnnnnnnnnnnnnn 10
4.1 WFS _INF _ALM ST ATUS ... s s s s s s s s s s s e ssasansnasensnssansnnsnnsnnrnnsnnren 10
4.2 WFS_INF_ALM_CAPABILITIES ...t s s s s s ss s s s s s s s s s s s s e s e sensnnsnnsnnnen 12
5. EXECULe COMMEANAS.......cciiiiemmeeeriiirissssssmsmsesrrrsssssssssssssssessssssssnsmsssssneessssssnnnsesnsnesssnnn 13
51 WFS_CMD_ALM_SET_ALARMoccviiiriitieeiieesessestsesssssssssesssssssesssssssssssssssssssssssssssssseses 13
5.2 WFS_CMD_ALM_RESET_ALARMcceiuiiiiiieiseeesiesessssssssesesssssssesssssssssssssssssssssssssssssseses 14
5.3 WFS_CMD_ALM_RESETccuiitiiitiitetetistesessessesasssssssssssssssessessssssssssssssssssssssssssssssssssssssenes 15
5.4 WFS_CMD_ALM_SYNCHRONIZE_COMMAND ... s s s e s s s e s enns 16
6 =Y 1) = 17
6.1 WFS_SRVE_ALM_DEVICE_SETcctiiiiiteseeiieisessesessesssssssessessssssssssssssssssssssssssssssssssssseses 17
6.2 WFS_SRVE_ALM_DEVICE_RESETccoiitietiiieisesesiesessssssessesssssssesssssssssssssssssssssssssssssseses 18
7. [O o 1= o =Y ol] = 19

CWA 16926-13:2015 (E)

Europeanforeword

This CWA is revision 3.30 ofthe XFS interface specification.

This CEN Workshog Agreement has been drafted and approved by a Workshop of representatives of interested
t

parties

on March 197 2015, the constitution of which was supported by CEN following the public call for

participation made on 1998-06-24. The specification is continuously reviewed and commented in the CEN/ISSS
Workshop on XFS. It is therefore expected that an update of the specification will be published in due time as a

CWA,

superseding this revision 3.30.

A list of the individuals and organizations which supported the technical consensus represented by the CEN
Workshop Agreement is available from the CEN/XFS Secretariat. The CEN XFS Workshop gathered suppliers as

well as

banks and other financial service companies.

The CWA is published as a multi-part document, consisting of:

Part 1:
Part 2:
Part 3:
Part 4:
Part 5:
Part 6:
Part 7:
Part 8&:
Part 9:

Part 10:
Part 11:
Part 12:
Part 13:
Part 14:
Part 15:
Part 16:
Part 17:
Part 18:

Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference
Service Classes Definition - Programmer's Reference

Printer and Scanning Device Class Interface - Programmer's Reference
Identification Card Device Class Interface - Programmer's Reference

Cash DispenserDevice Class Interface - Programmer's Reference

PIN Keypad Device Class Interface - Programmer's Reference

Check Reader/Scanner Device Class Interface - Programmer's Reference
Depository Device Class Interface - Programmer's Reference

Text Terminal Unit Device Class Interface - Programmer's Reference

Sensors and Indicators Unit Device Class Interface - Programmer's Reference
Vendor Dependent Mode Device Class Interface - Programmer's Reference
Camera Device Class Interface - Programmer's Reference

Alarm Device Class Interface - Programmer's Reference

Card Embossing Unit Device Class Interface - Programmer's Reference
Cash-In Module Device Class Interface - Programmer's Reference

Card Dispenser Device Class Interface - Programmer's Reference

Barcode Reader Device Class Interface - Programmer's Reference

Item Processing Module Device Class Interface- Programmer's Reference

Parts 19 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendumto this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

Part 29:
Part 30:
Part 31:
Part 32:
Part 33:
Part 34:
Part 35:
Part 36:
Part 37:
Part 38:

XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

XFS MIB Device Specific Definitions - Printer Device Class

XFS MIB Device Specific Definitions - Identification Card Device Class

XFS MIB Device Specific Definitions - Cash Dispenser Device Class

XFS MIB Device Specific Definitions - PIN Keypad Device Class

XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class
XFS MIB Device Specific Definitions - Depository Device Class

XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class
XFS MIB Device Specific Definitions - Camera Device Class

CWA 16926-13:2015 (E)

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class
Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class
Parts 48 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Service Provider Interface (SPI) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version
3.30 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.20 (CWA 16374) to
Version 3.30 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version
3.30 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this CWA) -
Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this CWA) -
Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30
(this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version 3.30 (this
CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.20 (CWA 16374) to Version
3.30 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations onthe
CW A specifications, which are notrequiring functional changes. The current version of the Release Notes is
available online from http://www.cen.cu/work/areas/ict/ebusiness/pages/ws-xfs.aspx.

4

http://www.cen.eu/work/areas/ict/ebusiness/pages/ws-xfs.aspx

CWA 16926-13:2015 (E)

The information in this document represents the Workshop's current views on the issues discussed as ofthe date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN makes no
warranty, express or implied, with respectto this document.

The formal process followed by the Workshop in the development of the CEN Workshop Agreement has been
endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC
Management Centre can be held accountable for the technical content of the CEN Workshop Agreement or possible
conflict with standards orlegislation. This CEN Workshop Agreement can in no way be held as being an official
standard developed by CEN and its members.

The final review/endorsement round for this CWA was started on 2015-01-16 and was successfully closed on 2015-
03-19. The final text of this CW A was submitted to CEN for publication on 2015-06-19. The specification is
continuously reviewed and commented in the CEN Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CW A, superseding this revision 3.30.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights.
CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following
countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech
Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Comments or suggestions fromthe users of the CEN Workshop Agreement are welcome and should be addressed
to the CEN-CENELEC Management Centre.

Revision History:

3.00 October 18, 2000 Initial Release.

3.10 November 29, 2007 For a description of changes from version 3.00 to version
3.10 seethe ALM 3.10 Migration document.

3.20 March 2, 2011 For a description of changes from version 3.10 to version
3.20 seethe ALM 3.20 Migration document.

3.30 March 19, 2015 For a description of changes from version 3.20 to version
3.30 seethe ALM 3.30 Migration document.

CWA 16926-13:2015 (E)

1. Introduction

1.1 Background to Release 3.30

The CEN/XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor software
interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are developed
within the CEN (European Committee for Standardization/Information Society Standardization System) Workshop
environment. CEN Workshops aim to arrive at a European consensus on an issue that can be published as a CEN
Workshop Agreement (CWA).

The CEN/XFS Workshop encourages the participation of both banks and vendors in the deliberations required to
create an industry standard. The CEN/XFS Workshop achieves its goals by focused sub-groups working
electronically and meeting quarterly.

Release 3.30 of the XFS specification is based ona C API and is delivered with the continued promise for the
protection of technical investment for existing applications. This release of the specification extends the
functionality and capabilities of the existing devices covered by the specification, butit does notinclude any new
device classes. Notable enhancements include:

e Enhanced reporting of ShutterJammed Status and a new Shutter Status event for CDM, CIM and
IPM.

e Addition of a Synchronize command for all device classes,in order to allow synchronized action
where necessary.

e Directional Guidance Light support.

e Addition ofa CIM Deplete Command.

e Support for EMV Intelligent Contactless Readers.

e Support in PIN for Encrypting Touch Screen.

e PIN Authentication functionality.

e New PIN Encryption Protocols added for Chinese market.
e PIN TR34 standard supported.

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of Service
Providers, butnot all of them, and therefore are notincluded in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the
command is as similar as possible across all services, since a major objective of XFS is to standardize function
codes and structures for the broadest variety of services. For example, using the WFSExecute function, the
commands to read data from various services are as similar as possibleto each other in their syntaxand data
structures.

In general, the specific command set for a service class is defined as a superset ofthe specific capabilities likely to
be provided by the developers of the services of that class; thus any particular device will normally supportonly a
subset ofthe defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of thatservice does notsupportit, and the unsupported capability is not considered to be

fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation.
An example would be a request from an application to turn on a control indicator on a passbook printer; the Service

Provider recognizes the command, butsince the passbookprinter it is managing does not include that indicator, the

Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor

6

CWA 16926-13:2015 (E)

implementation of thatservice does not supportit, and the unsupported capability is considered to be fundamental
to the service. In this case,a WFS_ERR UNSUPP_COMMAND error is returned to the calling application. An
example would be a request from an application to a cash dispenserto dispense coins; the Service Provider
recognizes the command but, since the cash dispenserit is managing dispenses only notes, returns this error.

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a
WEFS _ERR INVALID COMMAND error is returned to the calling application.
This design allows implementation of applications that can be used with a range of services that provide differing

subsets ofthe functionalities thatare defined for their service class. Applications may use the WFS GetInfo and

WEFSAsyncGetlnfo commands to inquire about the capabilities of the service they are about to use,and modify
their behavior accordingly, or they may use functions and then deal with WFS_ERR _UNSUPP_COMMAND error

returns to make decisions as to how to use the service.

CWA 16926-13:2015 (E)

2. Alarms

This specification describes the functionality ofthe services provided by Alarms (ALM) under XFS, by defining
the service-specific commands that can be issued, using the WFS Getlnfo, WFSAsyncGetIlnfo, WFSExecute and
WFS AsyncExecute functions. This section describes the functionality of an Alarm (ALM) service that applies to
both attended and unattended (self-service) devices.

The Alarm device class is provided as a separate service due to the need to set or reset an Alarm when one or more
logical services associated with an attended CDM or unattended (self-service) device are locked. Because logical
services can be locked by the application the Alarm is implemented in a separate device class to ensure that a set
(trigger) or reset operation can be performed at any time.

CWA 16926-13:2015 (E)

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.30

CWA 16926-13:2015 (E)

4. Info Commands

41 WFS_INF_ALM_STATUS

Description This command is used to requestthe Alarm status.

Input Param None.
Output Param [PWFSALMSTATUS IpStatus;

typedef struct wfs alm status
{

WORD fwDevice;

BOOL bAlarmSet;

LPSTR lpszExtra;

WORD wAntiFraudModule;

} WEFSALMSTATUS, *LPWEFSALMSTATUS;

fwDevice

Specifies the state of the alarm device as one of the following flags:

Value

Meaning

WFS_ALM_DEVONLINE

WFS_ALM_DEVOFFLINE
WFS_ALM_DEVPOW EROFF

WFS AIM DEVNODEVICE

WEFS_AIM_ DEVUSERERROR

WFS AIM DEVHWERROR

WFS_ALM_DEVBUSY
WFS_ALM_DEVFRAUDATTEMPT

WFS_ALM_DEVPOTENTIALFRAUD

bAlarmSet

The device is present, powered on and online
(i.e. operational, not busy processing a
request and not in an error state).

The device is offline (e.g. the operator has
taken the device offline by turning a switch).
The device is powered off or physically not
connected.

There is no device intended to be there; e.g.
this type of self service machine does not
contain such a device or it is internally not
configured.

The device is presentbut a person is
preventing proper device operation. The
application should suspend the device
operation or remove the device from service
until the Service Provider generates a device
state change event indicating the condition
of'the device has changed e.g. the error is
removed (WFS_ALM_ DEVONLINE) ora
permanent error condition has occurred
(WFS_ALM_DEVHW ERROR).

The device is present but inoperable due to a
hardware fault that prevents it from being
used.

The device is busy and unable to process an
execute command at this time.

The device is present but is inoperable
becauseit has detected a fraud attempt.

The device has detected a potential fraud
attempt and is capable of remaining in
service. In this case the application should
make the decision as to whether to take the
device offline.

Specifies the state of the Alarm as either Reset (FALSE) or Set (TRUE).

10

Error Codes

Comments

CWA 16926-13:2015 (E)

IpszExtra

Pointer to a list of vendor-specific, or any otherextended, information. The information is
returned as a series of “key=value”strings so thatit is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

wAntiFraudModule
Specifies the state of the anti-fraud module as one of'the following values:
Value Meaning
WFS ALM_AFMNOTSUPP No anti-fraud module is available.
WFS ALM_AFMOK Anti-fraud module is in a good state and no
foreign device is detected.
WFS_ALM_AFMINOP Anti-fraud module is inoperable.
WFS_AILM_AFMDEVICEDETECTED Anti-fraud module detected the presence of a
foreign device.
WFS ALM_AFMUNKNOWN The state of the anti-fraud module cannotbe
determined.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

Applications which require or expect specific information to be present in the IpszExtra parameter
may not be device or vendor-independent.

In the case where communications with the device has been lost, the fwDevice field will report
WFS ALM_DEVPOW EROFF when the device has been removed or
WFS_ALM_ DEVHWERROR if the communications are unexpectedly lost. All other fields

should contain a value based on the following rules and priority:
1. Report the value as unknown.
2. Report the value as a general h/w error.

3. Report the value as the last known value.

11

CWA 16926-13:2015 (E)

4.2 WFS_INF_ALM_CAPABILITIES

Description This command is used to retrieve the capabilities of the Alarm.
Input Param None.
Output Param [PWFSALMCAPS IpCaps;

typedef struct wfs alm caps
{

WORD wClass;

BOOL bProgrammaticallyDeactivate;
LPSTR lpszExtra;

BOOL bAntiFraudModule;

LPDWORD lpdwSynchronizableCommands ;

} WFSALMCAPS, *LPWFSALMCAPS;

wClass
Specifies the logical service class as WFS_SERVICE CLASS ALM.

bProgrammaticallyDeactivate
Specifies whether the Alarm can be programmatically deactivated (TRUE) or can notbe
programmatically deactivated (FALSE).

IpszExtra

Pointer to a list of vendor-specific, or any otherextended, information. The information is
returned as a series of “key=value ’strings so thatit is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

bAntiFraudModule
Specifies whether the anti-fraud module is available. This can either be TRUE if available or

FALSE if notavailable.

IpdwSynchronizableCommands
Pointer to a zero-terminated list of DWORDs which contains the execute command IDs that can
be synchronized. If no execute command can be synchronized then this parameter will be NULL.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the IpszExtra parameter
may not be device or vendor-independent.

12

CWA 16926-13:2015 (E)

5. Execute Commands

51 WFS_CMD_ALM_SET_ALARM

Description
Input Param
Output Param
Error Codes
Events

Comments

This command is used to trigger an Alarm.

None.

None.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WEFS SRVE ALM DEVICE SET The alarm device has been triggered.
None.

13

CWA 16926-13:2015 (E)

52 WFS_CMD_ALM_RESET_ALARM

Description This command is used to resetan Alarm.

Input Param None.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS SRVE ALM DEVICE RESET The alarm device has been reset.
Comments None.

14

CWA 16926-13:2015 (E)

53 WFS_CMD_ALM_RESET

Description
Input Param
Output Param
Error Codes
Events

Comments

Sends a service reset to the Service Provider.

None.

None.

Only the generic error codes defined in [Ref. 1] can be generated by this command.
Only the generic events defined in [Ref. 1] canbe generated by this command.

This command is used by an application control program to causea device to resetitself to a
known good condition.

15

CWA 16926-13:2015 (E)

54 WFS_CMD_ALM_SYNCHRONIZE_COMMAND

Description

Input Param

Output Param
Error Codes

Events

Comments

16

This command is used to reduce response time of a command (e.g. for synchronization with
display) as well as to synchronize actions of the different device classes. This command is
intended to be used only on hardware which is capable of synchronizing functionality within a
single device class or with other device classes.

The list of execute commands which this command supports forsynchronization is retrieved in
the [pdwSynchronizableCommands parameter of the WFS_INF_ALM CAPABILITIES.

This command is optional, i.e, any other command can be called without having to call it in
advance. Any preparation that occurs by calling this command will not affect any other
subsequent command. However, any subsequent execute command otherthan the one that was
specified in the dwCommand input parameter will execute normally and may invalidate the
pending synchronization. In this case the application should call the

WFS _CMD_ALM_SYNCHRONIZE COMMAND again in order to starta synchronization.

LPWFSALMSYNCHRONIZECOMMAND IpSynchronizeCommand;

typedef struct wfs alm synchronize command

{
DWORD dwCommand;

LPVOID lpCmdData;
} WESALMSYNCHRONIZECOMMAND, *LPWEFSALMSYNCHRONIZECOMMAND;

dwCommand
The command ID of the command to be synchronized and executed next.

IpCmdData

Pointer to data or a data structure that represents the parameter that is normally associated with
the command thatis specified in dwCommand. This parameter can be NULL if no command input
parameter is needed or if this detail is notneeded to synchronize for the command.

It will be device-dependent whether the synchronization is effective or notin the case where the
application synchronizes fora command with this command specifying a parameter but
subsequently executes the synchronized command with a different parameter. This case should
notresult in an error; however, the preparation effect could be different from what the application
expects. The application should, therefore, make sureto usethe same parameter between
IpCmdData of this command and the subsequent corresponding execute command.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning

WFS ERR AIM_COMMANDUNSUPP The command specified in the dwCommand
field is not supported by the Service
Provider.

WFS ERR AIM SYNCHRONIZEUNSUPP The preparation for the command specified
in the dwCommand with the parameter
specified in the [pCmdData is not supported
by the Service Provider.

Only the generic events defined in [Ref. 1] canbe generated by this command.

For sample flows of this synchronization see the [Ref 1] Appendix C.

6. Events

CWA 16926-13:2015 (E)

6.1 WFS_SRVE_ALM_DEVICE_SET

Description

Event Param

Comments

The Alarm has been set (triggered) by an external eventor a programmatic request to set (trigger)
the Alarm.

None.

None.

17

CWA 16926-13:2015 (E)

6.2 WFS_SRVE_ALM_DEVICE_RESET

Description The Alarm has been manually or programmatically reset.
Event Param None.

Comments None.

18

CWA 16926-13:2015 (E)

7. C -Headerfile

/****** hhkkhk kA hkhkhrkhk Ak Ak hkhkhrhk khhhkhhkhrhhhkhhkhr kb hhhkhkhkhkrhk khrkhkhkhkhdkhkhhkrxkhkhkhkhhkkhx krxkhx xkkx

* *
* xfsalm.h XFS - Alarm (ALM) definitions *
* *
* Version 3.30 (March 19 2015) *
* *
KAk A kA kA khhkhhA Ak Ak kA hkhhkhk hk Ak hkhkhk Ak hkhkhkhk hkhhkhkhk hkhkhkhkhk ko hhkhkhk Ak hkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhhkhkhkhh Ak xkx* ***/

#ifndef _ INC XFSAILM H
#define _ INC XFSALM H

#ifdef cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
fpragma pack (push, 1)

/* values of WEFSALMCAPS.wClass */

#define WFS_SERVICE CLASS ALM (11)

#define WEFS_SERVICE CLASS VERSION ALM 0x1E03 /*Version 3.30 */
#define WFS_SERVICE CLASS NAME ALM "ALM"

#define ALM _SERVICE OFFSET (WFS_SERVICE_CLASS_ALM * 100)

/* ALM Info Commands */

[

#define WEFS_INF ALM STATUS (ALM_SERVICE OFFSET +
#define WFS_INF ALM CAPABILITIES (ALM_SERVICE_ OFFSET + 2)

/* ALM Execute Commands */

#define WES CMD ALM SET ALARM (ALM SERVICE OFFSET + 1)
#define WFS_CMD_ALM RESET ALARM (ALM_SERVICE_OFFSET + 2)
#define WFS_CMD_ALM;RESET (ALM_SERVICE_OFFSET + 3)
#define WES CMD ALM SYNCHRONIZE COMMAND (ALM SERVICE OFFSET + 4)
/* ALM Messages */

#define WES SRVE ALM DEVICE SET (ALM SERVICE OFFSET + 1)
#define WFS_SRVE_ALM DEVICE RESET (ALM_SERVICE_OFFSET + 2)
/* values of WESALMSTATUS. fwDevice */

#define WFS_ALM_DEVONLINE WFS_STAT_DEVONLINE
#define WES ALM DEVOFFLINE WES STAT DEVOFFLINE
#define WES ALM DEVPOWEROFF WES STAT DEVPOWEROFF
#define WFS_ALM_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFSiALMiDEVHWERROR WFSASTATiDEVHWERROR
#define WES ALM DEVUSERERROR WES STAT DEVUSERERROR
#define WES ALM DEVBUSY WE'S STAT DEVBUSY

#define WFS_ALM_DEVFRAUDATTEMPT WFS_STAT_DEVFRAUDATTEMPT
#define WES ALM DEVPOTENTIALFRAUD WES STAT DEVPOTENTIALFRAUD

/* values of WFSALMSTATUS.wAntiFraudModule */

#define WFS_ALM AFMNOT SUPP (0)
#define WFS_ALM_AFMOK (1)
#define WES ALM AFMINOP (2)
#define WFS_ALM AFMDEVICEDETECTED (3)
#define WFS_ALM AFMUNKNOWN (4)

/* XFS ALM Errors */

19

CWA 16926-13:2015 (E)

#define WFS ERR AIM COMMANDUNSUPP (- (ALM_SERVICE OFFSET + 0))
#define WEFS ERR ALM SYNCHRONIZEUNSUPP (—(ALMﬁSERVICEioFFSET + 1))
2 R R ————————————————————_ ==/

/* ALM Info Command Structures */

/* ——%

typedef struct wfs alm status
{

WORD fwDevice;

BOOL bAlarmSet;

LPSTR lpszExtra;

WORD wAnt iFraudModule;

} WESALMSTATUS, *LPWEFSALMSTATUS;

typedef struct wfs alm caps
{

WORD wClass;

BOOL bProgrammaticallyDeactivate;
LPSTR lpszExtra;

BOOL bAntiFraudModule;

LPDWORD lpdwSynchronizableCommands;

} WESALMCAPS, *LPWFSALMCAPS;

typedef struct wfs alm synchronize command

{
DWORD dwCommand ;

LPVOID lpCmdData;
} WESALMSYNCHRONIZECOMMAND, *LPWEFSALMSYNCHRONIZECOMMAND;

/* restore alignment */
#pragma pack (pop)

#ifdef cplusplus

} /*extern "C"*/
#endif
#endif /* __INC XFSALM H */

20

	Table of Contents
	European foreword
	1. Introduction
	1.1 Background to Release 3.30
	1.2 XFS Service-Specific Programming

	2. Alarms
	3. References
	4. Info Commands
	4.1 WFS_INF_ALM_STATUS
	4.2 WFS_INF_ALM_CAPABILITIES

	5. Execute Commands
	5.1 WFS_CMD_ALM_SET_ALARM
	5.2 WFS_CMD_ALM_RESET_ALARM
	5.3 WFS_CMD_ALM_RESET
	5.4 WFS_CMD_ALM_SYNCHRONIZE_COMMAND

	6. Events
	6.1 WFS_SRVE_ALM_DEVICE_SET
	6.2 WFS_SRVE_ALM_DEVICE_RESET

	7. C - Header file

